Loading [MathJax]/jax/output/SVG/config.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 1, Pages 107–120 (Mi at1271)  

This article is cited in 9 scientific papers (total in 9 papers)

Queuing Systems

$Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers

A. Casconea, R. Manzoa, A. V. Pechinkinb, S. Ya. Shorginb

a University of Salerno, Salerno, Italy
b Institute of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (195 kB) Citations (9)
References:
Abstract: Consideration was given to the discrete-time queuing system with inversive servicing without interrupts, second-order geometrical arrivals, arbitrary (discrete) distribution of the customer length, and finite buffer. Each arriving customer has length and random volume. The total volume of the customers sojourning in the system is bounded by some value. Formulas of the stationary state probabilities and stationary distribution of the time of customer sojourn in the system were established.
Presented by the member of Editorial Board: A. I. Lyakhov

Received: 25.02.2010
English version:
Automation and Remote Control, 2011, Volume 72, Issue 1, Pages 99–110
DOI: https://doi.org/10.1134/S0005117911010085
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Cascone, R. Manzo, A. V. Pechinkin, S. Ya. Shorgin, “$Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers”, Avtomat. i Telemekh., 2011, no. 1, 107–120; Autom. Remote Control, 72:1 (2011), 99–110
Citation in format AMSBIB
\Bibitem{CasManPec11}
\by A.~Cascone, R.~Manzo, A.~V.~Pechinkin, S.~Ya.~Shorgin
\paper $Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers
\jour Avtomat. i Telemekh.
\yr 2011
\issue 1
\pages 107--120
\mathnet{http://mi.mathnet.ru/at1271}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808556}
\zmath{https://zbmath.org/?q=an:1233.90112}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 1
\pages 99--110
\crossref{https://doi.org/10.1134/S0005117911010085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286603000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79551534500}
Linking options:
  • https://www.mathnet.ru/eng/at1271
  • https://www.mathnet.ru/eng/at/y2011/i1/p107
  • This publication is cited in the following 9 articles:
    1. Iván Atencia, José Luis Galán–García, Gabriel Aguilera–Venegas, Pedro Rodríguez–Cielos, María Ángeles Galán–García, Yolanda Padilla–Domínguez, “A discrete-time queueing system with three different strategies”, Journal of Computational and Applied Mathematics, 393 (2021), 113486  crossref
    2. Ekaterina Lisovskaya, Ekaterina Pankratova, Svetlana Moiseeva, Michele Pagano, Lecture Notes in Computer Science, 12563, Distributed Computer and Communication Networks, 2020, 335  crossref
    3. A. V. Gorbunova, V. A. Naumov, Yu. V. Gaidamaka, K. E. Samuilov, “Resursnye sistemy massovogo obsluzhivaniya s proizvolnym obsluzhivaniem”, Inform. i ee primen., 13:1 (2019), 99–107  mathnet  crossref  elib
    4. Moiseev A., Moiseeva S., Lisovskaya E., “Infinite-Server Queueing Tandem With Mmpp Arrivals and Random Capacity of Customers”, Proceedings of the 31st European Conference on Modelling and Simulation (ECMS 2017), eds. Paprika Z., Horak P., Varadi K., Zwierczyk P., VidovicsDancs A., Radics J., European Council Modelling & Simulation, 2017, 673–679  isi
    5. Atencia I., “A Discrete-Time Queueing System With Changes in the Vacation Times”, Int. J. Appl. Math. Comput. Sci., 26:2 (2016), 379–390  crossref  mathscinet  zmath  isi  elib  scopus
    6. Atencia I., “a Discrete-Time System With Service Control and Repairs”, Int. J. Appl. Math. Comput. Sci., 24:3 (2014), 471–484  crossref  mathscinet  zmath  isi  elib
    7. S. Shorgin, K. Samouylov, I. Gudkova, O. Galinina, S. Andreev, 2014 First International Science and Technology Conference (Modern Networking Technologies) (MoNeTeC), 2014, 1  crossref
    8. Atencia I., Fortes I., Sanchez S., Pechinkin A.V., “A Discrete-Time Queueing System with Different Types of Displacement”, Proceedings 27th European Conference on Modelling and Simulation Ecms 2013, eds. Rekdalsbakken W., Bye R., Zhang H., European Council Modelling & Simulation, 2013, 558–564  isi
    9. A. V. Pechinkin, I. A. Sokolov, S. Ya. Shorgin, “Ogranichenie na summarnyi ob'em zayavok v diskretnoi sisteme Geo$/G/1/\infty$”, Inform. i ee primen., 6:3 (2012), 107–113  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:487
    Full-text PDF :106
    References:67
    First page:9
     
      Contact us:
    math-net2025_02@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025