Abstract:
Consideration was given to the discrete-time queuing system with inversive servicing without interrupts, second-order geometrical arrivals, arbitrary (discrete) distribution of the customer length, and finite buffer. Each arriving customer has length and random volume. The total volume of the customers sojourning in the system is bounded by some value. Formulas of the stationary state probabilities and stationary distribution of the time of customer sojourn in the system were established.
Presented by the member of Editorial Board:A. I. Lyakhov
Citation:
A. Cascone, R. Manzo, A. V. Pechinkin, S. Ya. Shorgin, “$Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers”, Avtomat. i Telemekh., 2011, no. 1, 107–120; Autom. Remote Control, 72:1 (2011), 99–110
\Bibitem{CasManPec11}
\by A.~Cascone, R.~Manzo, A.~V.~Pechinkin, S.~Ya.~Shorgin
\paper $Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers
\jour Avtomat. i Telemekh.
\yr 2011
\issue 1
\pages 107--120
\mathnet{http://mi.mathnet.ru/at1271}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808556}
\zmath{https://zbmath.org/?q=an:1233.90112}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 1
\pages 99--110
\crossref{https://doi.org/10.1134/S0005117911010085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000286603000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79551534500}
Linking options:
https://www.mathnet.ru/eng/at1271
https://www.mathnet.ru/eng/at/y2011/i1/p107
This publication is cited in the following 9 articles:
Iván Atencia, José Luis Galán–García, Gabriel Aguilera–Venegas, Pedro Rodríguez–Cielos, María Ángeles Galán–García, Yolanda Padilla–Domínguez, “A discrete-time queueing system with three different strategies”, Journal of Computational and Applied Mathematics, 393 (2021), 113486
Ekaterina Lisovskaya, Ekaterina Pankratova, Svetlana Moiseeva, Michele Pagano, Lecture Notes in Computer Science, 12563, Distributed Computer and Communication Networks, 2020, 335
A. V. Gorbunova, V. A. Naumov, Yu. V. Gaidamaka, K. E. Samuilov, “Resursnye sistemy massovogo obsluzhivaniya s proizvolnym obsluzhivaniem”, Inform. i ee primen., 13:1 (2019), 99–107
Moiseev A., Moiseeva S., Lisovskaya E., “Infinite-Server Queueing Tandem With Mmpp Arrivals and Random Capacity of Customers”, Proceedings of the 31st European Conference on Modelling and Simulation (ECMS 2017), eds. Paprika Z., Horak P., Varadi K., Zwierczyk P., VidovicsDancs A., Radics J., European Council Modelling & Simulation, 2017, 673–679
Atencia I., “A Discrete-Time Queueing System With Changes in the Vacation Times”, Int. J. Appl. Math. Comput. Sci., 26:2 (2016), 379–390
Atencia I., “a Discrete-Time System With Service Control and Repairs”, Int. J. Appl. Math. Comput. Sci., 24:3 (2014), 471–484
S. Shorgin, K. Samouylov, I. Gudkova, O. Galinina, S. Andreev, 2014 First International Science and Technology Conference (Modern Networking Technologies) (MoNeTeC), 2014, 1
Atencia I., Fortes I., Sanchez S., Pechinkin A.V., “A Discrete-Time Queueing System with Different Types of Displacement”, Proceedings 27th European Conference on Modelling and Simulation Ecms 2013, eds. Rekdalsbakken W., Bye R., Zhang H., European Council Modelling & Simulation, 2013, 558–564
A. V. Pechinkin, I. A. Sokolov, S. Ya. Shorgin, “Ogranichenie na summarnyi ob'em zayavok v diskretnoi sisteme Geo$/G/1/\infty$”, Inform. i ee primen., 6:3 (2012), 107–113